Chapter 7 Test, Form 2A

SCORE

Write the letter for the correct answer in the blank at the right of each question.

1. Simplify $(x^3)^8$.

$$\mathbf{A} x^{24}$$

B
$$x^{11}$$

$$C 8x^{24}$$

$$D 8x^{11}$$

2. Simplify $(-2hk)^4(4h^3k^5)^2$.

$$\mathbf{F} 2h^{24} k^{40}$$

$$G-64h^9k^{11}$$

$$\mathbf{H} - 256h^{10} k^{14} \mathbf{J} 256h^{10} k^{14}$$

3. Simplify $\frac{36b^4c^2}{9b^{-1}c^5}$. Assume the denominator is not equal to zero.

$$\mathbf{A} \frac{27b^4}{c^3} \qquad \qquad \mathbf{B} \frac{4b^4}{c^3}$$

$$\mathbf{B} \frac{4b^4}{c^3}$$

$$C \frac{27b^3}{c^3}$$

$$\mathbf{D} \, \frac{4b^5}{c^3}$$

4. Simplify $\frac{(3y^4n^6)^2}{(y^2n^{-3})^4}$. Assume the denominator is not equal to zero.

$$\mathbf{F} \frac{9}{y^{16}}$$

$$G^{\frac{9}{n^{24}}}$$

$$H 9y^{16}$$

J
$$9n^{24}$$

5. Which monomial represents the number of square units in the area of a circle with radius $4x^3$ units?

A
$$16\pi x^6$$

$$\mathbf{B} 8\pi x^6$$

C
$$16\pi x^9$$

D
$$8\pi x^5$$

6. Express 46,100,000 in scientific notation.

$$I\!\!F~4.61\times 10^7$$

$$\textbf{G}~4.61\times10^{6}$$

$$\textbf{H}~4.61\times10^{5}$$

J
$$4.61 \times 10^8$$

7. Evaluate $\frac{7 \times 10^4}{1.4 \times 10^{-5}}$.

$$A.5 \times 10^9$$

$$\textbf{B}~5\times10^{-20}$$

$$\textbf{C}~5\times10^{-1}$$

$$\textbf{D}~5\times10^{1}$$

8. ATTENDANCE The total attendance for a professional baseball team this season was 3.24×10^6 and two years ago was 2.43×10^6 . About how many times as large was this season's attendance as attendance two years ago?

$$\mathbf{G}$$
 0.9

9. Write $10v^{\frac{1}{2}}$ in radical form.

$$\mathbf{A}\sqrt{10y}$$

B
$$10\sqrt{y}$$

$$\mathbf{C}$$
 10 $\sqrt{10y}$

$$\mathbf{D} \ y \sqrt{10}$$

10. Evaluate $81^{\frac{3}{4}}$.

11. Solve $5^{x-2} = 125$.

Chapter 7 Test, Form 2A (continued)

12. Which is the equation for the *n*th term of the geometric sequence -4, 8, -16, ...?

$$\mathbf{F} a_n = -4 \cdot 2^{n-1}$$

H
$$a_n = -4 \cdot (-2)^{n-1}$$

$$G a_n = -2 \cdot (-4)^{n-1}$$

$$\mathbf{J} a_n = -2 \cdot 4^n$$

13. Which equation represents exponential growth?

A
$$y = 5(0.84)^x$$

B
$$y = 5x$$

C
$$y = 0.3x^3$$

D
$$y = 5 (1.06)^x$$

13. D

14. Which equation corresponds to the graph shown?

$$\mathbf{F} y = (3)^x + 1$$

H
$$y = 2(3^x)$$

$$\mathbf{G} \ y = 2(3^x + 1)$$

- 14. F
- 15. A weightlifter can increase the weight W(x) that she can lift according to $W(x) = 315(1.05)^x$, where x represents the number of training cycles completed. How much will she lift after 4 training cycles?
 - **A** 365 lb
- **B** 383 lb
- C 378 lb
- **D** 402 lb
- 15. <u>B</u>
- **16. BIOLOGY** A certain fast-growing bacteria increases 6% per minute. If there are 100 bacteria now, about how many will there be 12 minutes later?
 - **F** 172
- **G** 201
- H 48

J 190

- 16. G
- 17. POPULATION A city's population is about 954,000 and is decreasing at an annual rate of 0.1%. Predict the population in 50 years.
 - **A** 577,176
- **B** 906,300
- **C** 1,002,888
- **D** 907,450
- 17. ____D

- **18.** Find the third term of the sequence in which $a_1 = 7$ and $a_n = -2a_{n-1} + 11$, if $n \ge 2$.
 - F 23
- G-3

H 5

J 17

- **19.** Find an explicit formula for $a_1 = -4$, $a_n = a_{n-1} + 9$, $n \ge 2$.
 - **A** $a_n = 9n 13$

 $C a_n = 9n - 4$

B $a_n = n + 9$

D $a_n = -4n + 9$

- 20. Find a recursive formula for the arithmetic sequence 24, 32, 40, 48,
 - **F** $a_1 = 24$, $a_n = 8a_{n-1}$, $n \ge 2$
- **H** $a_1 = 24$, $a_n = \frac{4}{3}a_{n-1}$, $n \ge 2$
- **G** $a_1 = 24$, $a_n = \frac{1}{2}a_{n-1} + 20$, $n \ge 2$ **J** $a_1 = 24$, $a_n = a_{n-1} + 8$, $n \ge 2$

Bonus Simplify $\frac{7^{x-3}}{7^{3x-1}}$.