Chapter 9 Test, Form 2A

SCORE

Write the letter for the correct answer in the blank at the right of each question.

1. Consider the equation $y = x^2 + 5x - 6$. Determine whether the function has a maximum or minimum value. State the maximum of minimum value. What are the domain and range of the function?

D: {all real numbers} R: {all real numbers}

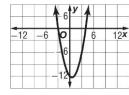
D: {all real numbers} R: $\{y \mid y \ge -12.25\}$

D: {all real numbers}

R: $\{ v \mid v \le 0 \}$

D: $x | x \le 2.5$

R: {all real numbers}


2. Which equation corresponds to the graph shown?

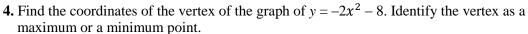
$$\mathbf{F} \ y = x^2 + 7x - 12$$

F
$$y = x^2 + 7x - 12$$

G $y = x^2 - x - 12$
H $y = x^2 + 5x + 12$
J $y = x^2 + 12x - 1$

$$\mathbf{G} \ \mathbf{v} = x^2 - x - 12$$

$$\mathbf{J} \, y = x^2 + 12x - 1$$

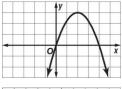

3. Find the equation of the axis of symmetry and the coordinates of the vertex of the graph of $y = 2x^2 - 12x + 6.$

$$\mathbf{A} \ x = -3; (-3, 60)$$

$$\mathbf{C} x = -3; (-3, 78)$$

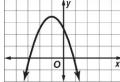
B
$$x = 3$$
; $(3, -12)$

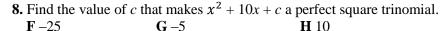
D
$$x = 3$$
; (3, 6)



$$\mathbf{J}$$
 (0, -8); maximum

5. Which appear to be the root(s) of the quadratic equation whose related function is graphed at the right?




6. One root of the quadratic equation whose related function is graphed lies between which two consecutive integers?

$$\mathbf{F}$$
 -3 and -2

$$\mathbf{H}$$
 –2 and –1

- 7. How is the graph of $g(x) = x^2 3$ related to the graph of $f(x) = x^2$?
- **A** translated down 3 units
- C translated right 3 units
- **B** translated up 3 units
- **D** translated left 3 units

$$G-5$$

Chapter 9 Test, Form 2A (continued)

9. What value of c makes $x^2 + 24x + c$ a perfect square trinomial?

A 576

D 12

9.

10. Which step is *not* performed in the process of solving $n^2 - 12n - 10 = 0$ by completing the square?

F Add 10 to each side.

H Factor $n^2 - 12n - 10 = 0$.

G Add 36 to each side.

J Take the square root of each side.

10. H

11. Which equation is equivalent to $2x^2 - 24x - 14 = 0$?

A $(x-6)^2 = 50$ **B** $(x-3)^2 = 13$

 $\mathbf{C} (x-3)^2 = 20$

D $(x-6)^2 = 43$

12. State the value of the discriminant of $3x^2 + 8x = 2$.

F 3

G 40

J 100

12. H

Solve each equation by using the Quadratic Formula. Round to the nearest tenth if necessary.

13. $4x^2 + 11x - 3 = 0$

A -2.4, -0.3 **B**
$$-\frac{1}{4}$$
, 3

$$B - \frac{1}{4}$$
, 3

D
$$-3, \frac{1}{4}$$

13.

14. $y^2 + 8y = 2$

 $\mathbf{F} - 8.2, 0.2$

15. Determine the number of real solutions of $7x^2 - 18x + 12 = 0$.

A 2

B infinitely many

C none

D 1

15. C

16. Look for a pattern in the table of values to determine which model best describes the da

ıta.	

H quadratic

49 343 J none of these

3

17. Which function best models the data in Question 16?

$$\mathbf{A} \mathbf{v} = 7x$$

F linear

B
$$y = 7x^2$$

G exponential

C
$$y = 7^x$$

D
$$v = 7^x + 1$$

18. If f(x) = [x + 2], find f(1.5).

H3.5

J 4

18. G

19. Which is *not* true about the graph of f(x) = |3x + 2|?

A The range includes all real numbers.

B It includes the point (-3, 7).

C The domain includes all real numbers.

D The graph is "V-shaped."

20. Which point is located on the graph of $f(x) = \begin{cases} \frac{1}{3}x + 2 & \text{if } x \leq 1 \\ \frac{1}{2}x + 1 & \text{if } x > 1 \end{cases}$?

F (-3, 1)

G(0, 1)

20.

Bonus What is the equation of the axis of symmetry of a parabola if its x-intercepts are -3 and 5?

B. x = 1