Chapter 10 Test, Form 2A

SCORE _____

Write the letter for the correct answer in the blank at the right of each question.

1. How does the graph of $y = \sqrt{x + 3}$ compare to the parent graph?

A translated up 3

C translated right 3

B translated down 3

D translated left 3

1. _____D

2. Which expression has a domain of $\{x \mid x \ge 2\}$?

 $\mathbf{F} \ y = \sqrt{x} + 2$

G
$$y = \sqrt{x} - 2$$

H
$$v = \sqrt{x + 2}$$

$$\mathbf{J} \mathbf{v} = \sqrt{x - 2}$$

2. _____J

For Questions 3-7, simplify each expression.

3. $5\sqrt{3} \cdot 2\sqrt{21}$

A $70\sqrt{3}$

B $10\sqrt{63}$

C $49\sqrt{3}$

- **D** $30\sqrt{7}$
- 3._ D

- 4. $\sqrt{\frac{x^2}{12}}$
 - $\mathbf{F} \frac{x^2}{2\sqrt{3}}$
- $\mathbf{G} \frac{|x|\sqrt{3}}{6}$
- $\mathbf{H}\frac{x}{6}$

 $\mathbf{J} \frac{|x|}{\sqrt{12}}$

4. **G**

5. $\frac{5}{\sqrt{11}-\sqrt{6}}$

A 1

- $\mathbf{B} \frac{5\sqrt{66}}{66}$
- $\textbf{C}\,\sqrt{11}+\sqrt{6}$
- **D** $\frac{5\sqrt{11}+5\sqrt{6}}{17}$
- 5. _____C

6. $\sqrt{18} - \sqrt{54} + 2\sqrt{50}$

F $13\sqrt{2} - 3\sqrt{6}$

- $G 4\sqrt{3} + 4\sqrt{5}$
- $\mathbf{H} 4\sqrt{3} 4\sqrt{5}$
- **J** $8\sqrt{2} 3\sqrt{6}$
- 6. _____F

7. $(\sqrt{14} + \sqrt{3})(\sqrt{6} - \sqrt{7})$

A $2\sqrt{5} - \sqrt{21} + 3 - \sqrt{10}$

 $C\sqrt{21}$

B $\sqrt{21} - 4\sqrt{2}$

 $\bm{D}\; \sqrt{21} + \sqrt{2}$

7. ____B

8. Solve $\sqrt{3x-2} + 4 = 8$.

F 12

G 6

 $\mathbf{H}^{\frac{2}{3}}$

 $J^{\frac{3}{2}}$

8. ____G

9. Solve $\sqrt{7a + 32} = a + 2$.

A-4

B 7

- **C** –4, 7
- **D** –7, 4
- 9. ____B
- **10.** A right triangle has one leg that is 7 centimeters. The hypotenuse is 25 centimeters. Find the length of the other leg.

F 15 cm

- $G\sqrt{674}$ cm
- H 24 cm
- $\mathbf{J} 5\sqrt{7} \text{ cm}$
- 10. ____H

11. Determine which side measures form a right triangle.

A 3, 8, 12

- **B** 5, 9, 11
- **C** 11, 13, 16
- **D** 6, 8, 10
- 11. <u>D</u>

12. Find $m \angle B$ to the nearest tenth if $\sin B = \frac{1}{3}$.

F 0.5°

- \mathbf{G} 18.4 $^{\circ}$
- **H** 19.5°
- **J** 70.5°
- 12. ____H

Chapter 10 Test, Form 2A (continued)

13. Determine which set of measures can be the lengths of the sides of a right triangle.

A 3, 6, 9

B 1, 1, $\sqrt{2}$

C 3, 3, 4

13._ B

14. What is the equation of the graph?

F $y = \sqrt{x + 1} - 1$ **G** $y = \sqrt{x - 1} - 1$ **H** $y = \sqrt{x + 1} + 1$

J $y = \sqrt{x-1} + 1$

15. Simplify $2\sqrt{y} \cdot 5\sqrt{y} \cdot 2\sqrt{y}$.

A $20y\sqrt{y}$ **B** $20\sqrt{y}$

 $C 20y^2 \sqrt{y}$

 $\mathbf{D} 20 v^3$

15. __ A

16. What is the length of a diagonal of a rectangle with a length of 9 inches and a width of 3 inches?

F 3.5 in.

G 9.5 in.

H 18 in.

J 90 in.

16. G

17. Determine which side measures form a right triangle.

A 1, 2, 3

B 2, 3, 4

C 3, 4, 5

D 4, 5, 6

17. _

18. LADDERS A 16 foot ladder leans against a wall. The base of the ladder is 6 feet from where the wall meets the ground. How far up the wall does the ladder reach?

F 14.8 ft

G 12.9 ft

H 144 ft

J 220 ft

For Questions 19 and 20, the leg opposite to acute $\angle A$ in a right triangle measures 12 units, and the hypotenuse measures 19 units.

19. What is sin *A*?

 $A^{\frac{12}{19}}$

 $\mathbf{B} \frac{19}{12}$

C 0.775

D 0.815

19. ____ A

20. What is $m \angle A$?

F 0.01°

G 32°

H 39°

J 51°

Bonus Find the length of a diagonal of a square if its area is 72 square meters.

12 m